
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2006; 52:707–721
Published online 6 March 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.1196

Continuation of travelling-wave solutions of the
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SUMMARY

An e�cient way of obtaining travelling waves in a periodic �uid system is described and tested. We
search for steady states in a reference frame travelling at the wave phase velocity using a �rst-order
pseudospectral semi-implicit time scheme adapted to carry out the Newton’s iterations. The method
is compared to a standard Newton–Raphson solver and is shown to be highly e�cient in performing
this task, even when high-resolution grids are used. This method is well suited to three-dimensional
calculations in cylindrical or spherical geometries. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Travelling waves appear in �uid systems as a result of various types of hydrodynamic insta-
bilities. For instance, many �ows driven by shear stresses result in travelling wave patterns.
Examples of such �ows are the Tollmien–Schlichting waves in the Poiseuille �ow [1], and
the precessing vortex breakdown solutions generated in a cylinder by the di�erential rotation
of the end walls [2–4]. Travelling waves are also observed in systems in which thermal in-
stabilities play an important role. This is the case of the travelling convection rolls induced in
annular or circular domains by double di�usion e�ects [5], or the thermal Rossby waves in
rotating systems [6], which usually arise in geophysical �ows and play a fundamental role
in weather and climate evolution.
Performing a time integration of the Navier–Stokes equations only permits the computa-

tion of the stable TW branches of solutions. However, unstable travelling waves, as well as
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708 I. MERCADER, O. BATISTE AND A. ALONSO

unstable steady states, usually play a fundamental role in the understanding of �uid dynam-
ical processes. The continuation of full branches of travelling waves is thus of fundamental
importance to thoroughly understand the origin of the dynamics observed in spatially periodic
systems.
Uniform trains of travelling waves can only exist in systems with a translational or a

rotational symmetry. In such systems, it is possible to choose a reference frame moving or
rotating at the wave phase velocity, which is unknown a priori, and to solve for a steady
state. Proceeding in this way, the computation of travelling waves requires the resolution of
the nonlinear equations with a Newton-like solver, and is not more di�cult than that of steady
states. In addition, both stable and unstable travelling-wave solutions can be obtained. This
approach has been used in the study of Rayleigh–B�enard convection [7] and in the analysis
of Poiseuille �ow [1], among other problems.
Recently, much more e�cient methods for the computation of steady states of the Navier–

Stokes equations have been introduced. These methods make use of a �rst-order semi-implicit
time scheme for the calculation of a Stokes preconditioner, which allows a matrix-free
inversion of the preconditioned Jacobian. This idea can be straightforwardly applied to the
computation of travelling waves, provided that the new terms arising from the change in the
frame of reference are properly treated in the time-stepping algorithm. In this paper, we will
show a way of doing this and we will compare the method to a standard Newton–Raphson
solver with an explicit evaluation and inversion of the unpreconditioned Jacobian.
As it will be detailed below, these two methods are implemented in di�erent formulations of

the Navier–Stokes equations. The �rst one is implemented in a primitive variable formulation
by using two di�erent time-stepping methods, whereas the Newton–Raphson solver is applied
in a stream-function formulation. It must be remarked that the matrix-free inversion of the
preconditioned Jacobian could also be used in a stream-function formulation; however, we
have chosen to implement it in a primitive variable formulation because it can be easily
extended to three-dimensional problems.
We have applied the method to the calculation of TW branches in two-dimensional binary-

�uid convection by using spectral techniques. Unlike convection in a pure �uid, the primary
instability in binary mixtures when heated from below can be oscillatory. For su�ciently neg-
ative separation ratio a branch of TW originates at a subcritical Hopf bifurcation and acquires
stability in a secondary saddle-node bifurcation. These TW are observed in experiments in
large narrow rectangular and annular cells [5]. We will obtain the branch of TW and compare
the e�ciency of di�erent methods in the computation of this TW solution.
The paper is organized as follows. In Section 2, we introduce a change of variables to obtain

a steady system of equations and describe a way of solving e�ciently the resulting system,
as an alternative to the classical Newton–Raphson (CNR) scheme. Section 3 deals with the
description of the test problem we have considered. In Section 4, we present the spectral
discretization and the time-stepping algorithms used, and a comparison of the convergence
and e�ciency of the di�erent methods is established. The main conclusions of the study are
summarized in Section 5.

2. COMPUTATION OF TRAVELLING WAVES

The calculations carried out in this paper are aimed at obtaining spatially periodic solutions
of the Navier–Stokes equations travelling at a velocity c in the periodic direction x. Since
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any variable � depends on the coordinate x and time t as �TW(x; y; z; t)= �TW(x − ct; y; z),
letting x̃= x − ct in the governing equations, the time derivative of � in the associated evo-
lution equation becomes −c@x̃�. Thus, we obtain a steady system of equations in the new
spatial coordinates x̃, y, and z. The unknown phase velocity c can be determined by adding
an equation to �x the phase of the solution. To do this, we typically force the real or imag-
inary part of a Fourier azimuthal coe�cient in a �xed point (r; z) to be zero. Special care
must be taken in the selection of the coe�cient and point to avoid that the value of the
coe�cient at that point was �xed by any symmetry of the solution. Once we have converted
the evolution equations into a steady system, we can apply the standard procedures to solve
these new equations. We propose that this new term receives the same numerical treatment
as the advective nonlinear terms u · ∇�, in the Navier–Stokes equations and in the rest of
conservation equations.
We present here calculations using two di�erent approaches. The �rst one consists in using

a CNR iterative scheme with an explicit evaluation of the Jacobian. As is well known, the
building, storage and inversion of the Jacobian matrix, which is usually bad conditioned, con-
stitutes in general a di�cult task with notable limitations mainly associated to the number of
equations M . The cost of direct inversion is order O(M 3), which is not improved if matrix-free
methods are used as an alternative. However, since we use this approach in a stream-function
formulation of the Navier–Stokes equations (the problem proposed as a test is two-
dimensional), we have the advantage of avoiding the problems associated with the coupling
of the pressure with the velocity to satisfy the incompressibility constraint. The solution of
the discretized problem satis�es both the boundary conditions and the condition of incom-
pressibility. We had previously used this method to calculate numerically the travelling waves
arising in two-dimensional planar Poiseuille �ow [1] and in Rayleigh–B�enard convection [7],
and to obtain thermal Rossby waves [8].
The second approach, proposed by Mamun and Tuckerman [9], is based on solving

in a very e�cient manner the system resulting from each Newton iteration

(L+NX)�X=(L+N)X (1a)

X← X − �X (1b)

Here, X represents the spatially discretized �elds, �X the correction �elds in every Newton’s
iteration, L and N the spatially discretized linear and nonlinear operators, respectively, and
NX the Jacobian of the nonlinear term evaluated at X.
Mamun and Tuckerman noted that the �rst-order semi-implicit time scheme

Xn+1 −Xn
�t

=LXn+1 +NXn (2)

where n stands for the instant of time, tn+1 = tn +�t, can be rewritten as

Xn+1 −Xn
�t

=(I −�tL)−1(L+N)Xn (3)

They proposed to solve the linear system (1a) in every Newton’s iteration using
P=(I −�tL)−1, with a large value of �t, as a preconditioner,

(I −�tL)−1(L+NX)�X=(I −�tL)−1(L+N)X (4)
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and to solve this linear system by using a matrix-free method. According to the relation-
ship (3), the right-hand side of (4) can be obtained by carrying out a time step evolution,
and the left-hand side by carrying out a linearized time step. In this way, neither the building
of the Jacobian matrix (L+NX) nor its storage are needed. A summary of di�erent problems
in which this method was used to calculate steady solutions can be found in Reference [10].
We have implemented this second approach by using two di�erent time-stepping methods.

In these methods, the decoupling of the velocity and pressure is obtained from a speci�c
splitting of the system based on the time integration scheme, where the pressure is determined
by projecting an appropriate velocity �eld into a divergence-free space.
The �rst fractional step method we have used was proposed by Karniadakis et al. [11]

(hereafter referred to as KIO) and consists of an explicit treatment of the predicted velocity
from the advection terms, followed by an implicit resolution of the corrected velocity from
the di�usion terms. To solve the Poisson equation for the pressure, the authors introduce a
Neumann boundary condition, obtained from the semi-discrete Navier–Stokes and continuity
equations, which avoids instabilities. In this boundary condition the viscous linear term is
rewritten in terms of a solenoidal part, approximated by an explicit scheme, and an irrotational
part, approximated by an implicit scheme of appropriate order. This time-stepping scheme,
modi�ed as described in Reference [9], was used to compute steady states in a Marangoni
convection problem in a di�erentially heated binary mixture [12].
The second time-stepping method we have used was proposed by Hugues and

Randrimiampianina [13] (hereafter referred to as IPS) and corresponds to an improvement
of the projection scheme proposed by Goda [14] and implemented by Gresho [15] to �nite
element approximations. The fractional steps consists of a predictor for the pressure, directly
derived from the Navier–Stokes equations with the Neumann boundary condition proposed in
Reference [11], a predictor for an intermediate velocity �eld from the momentum equation
taking into account the predicted pressure obtained from the previous time level, and �nally
a correction step with an explicit evaluation of the �nal divergence-free velocity �eld. We
have used this method in a second-order time-integration scheme to analyse two-dimensional
oscillatory binary-�uid convection, both in large aspect ratio containers heated from below
[16] and in laterally heated cavities [17]. In this last problem, a �rst-order time-stepping for-
mulation to carry out Newton’s method, as described above, was used to calculate the steady
solutions [18].

3. THE TEST PROBLEM

We will test the di�erent approaches in a problem of double-di�usive convection that gives
rise to travelling waves in the �rst stage of convection. We consider Boussinesq binary-�uid
convection in a two-dimensional domain (x; z) ∈ [0; L]× [0; d], with aspect ratio of the cell 	
de�ned as 	=L=d, in the presence of a vertical gravity �eld g= −gêz. A vertical temperature
gradient is imposed by �xing a temperature di�erence �T between the horizontal plates, with
the temperature at the bottom higher than at the top. The boundary conditions are taken to be
periodic in x, with period L, and we impose no mass �ux, �xed temperature and the no-slip
condition at the top and bottom plates. With these conditions the system admits the following
basic conductive state, with constant gradients of temperature and concentration,

uc=0 (5a)
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Tc=T0 −�T
(
z
d
− 1
2

)
(5b)

Cc=C0 + C0(1− C0)ST�T
(
z
d
− 1
2

)
(5c)

where u=(u; w) is the velocity �eld; T and C are the �elds of temperature and concentration
of the denser component, respectively; T0 and C0 are their mean values, and ST is the Soret
coe�cient.
The dynamics of the system is governed by the continuity equation, the Navier–Stokes

equations and the energy and mass conservation equations [19]. If we nondimensionalize the
equations using the height of the layer d as the unit of length, the vertical thermal di�usion
time d2=� (� being the thermal di�usivity), as the unit of time and the imposed vertical
temperature di�erence �T as the unit of temperature, the dimensionless equations in the
Boussinesq approximation read as follows

∇ · u=0 (6a)

@tu+ (u · ∇)u= −∇p+ �∇2u+ R�[(1 + S)
 + S�]êz (6b)

@t
+ (u · ∇)
=w +∇2
 (6c)

@t�+ (u · ∇)�= −∇2
 + �∇2� (6d)

Here, 
 denotes the departure of temperature from its conduction pro�le, 
= (T − Tc)=�T ,
and � is related to the concentration and temperature as �= −(C−Cc)=(C0(1−C0)ST�T )−
.
The dimensionless parameters in the above equations are the Rayleigh number R, the Prandtl
number �, the Lewis number �, and the separation ratio S, de�ned as

R=
��Tgd3

��
; �=

�
�
; �=

D
�
; S=C0(1− C0)	�ST

where � and 	 are the thermal and concentration expansion coe�cients, � is the kinematic
viscosity and D is the mass di�usivity. The boundary conditions at the top and bottom plates
are

u=
= @z�=0 on z=0; 1 (7)

As a measure of the heat transport by convection, we use the Nusselt number Nu, de�ned
as the ratio of the heat �ux through the top plate to that of the corresponding conductive
solution. It has the following expression:

Nu=1− 	−1
∫ x=	

x=0
@z
(z=1) dx

We also evaluate, as an estimate of the strength of the convection, the dimensionless quantity
Ek , de�ned as

Ek =	−1
∫ x=	

x=0

∫ z=1

z=0
u · u dx dz

which is directly related to the mean kinetic energy of the system.
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Figure 1. (a) Bifurcation diagram (Nusselt number− 1 versus the Rayleigh number) showing the SOC
and TW branches of solutions in a periodic box of 	=2; and (b) phase velocity of the TW as a function
of the Rayleigh number. R∗ indicates the parity-breaking bifurcation of the SOC states and Rc the

Hopf bifurcation of the conductive state. S = − 0:12, �=6:86, �=0:0083.

For su�ciently negative values of the separation ratio, which is the case considered here,
the onset of convection is oscillatory and the translation invariance is broken, i.e. the wave
number k of the dominant perturbation is nonzero, and a pattern of wavelength a=2
=k
appears. Due to the O(2)×Z2 symmetries of the problem, the Hopf bifurcation of the con-
ductive state gives rise to two branches of nontrivial solutions that bifurcate simultaneously
[20]. The instability evolves either to a pattern of standing waves (SW) or into waves that
travel in either x-direction (TW). For the parameters chosen in this paper, if we use the
Rayleigh number as a bifurcation parameter, the TW branch typically bifurcates subcritically
(see Figure 1), acquiring stability at a secondary saddle-node bifurcation. When the Rayleigh
number is increased from the saddle-node point, the TW branch disappears in a parity-breaking
bifurcation of steady solutions, usually called SOC states (stationary overturning convection),
to which stability is transferred [21]. The standing waves are unstable from the onset and
usually disappear in a global bifurcation in which the SW solution connects with an unstable
SOC state.
Figure 1(a) shows the bifurcation diagram of solutions in a periodic box of 	=2 for

S= − 0:127, �=6:86, and �=0:0083. The Nusselt number has been plotted as a function of
the Rayleigh number, which is the control parameter of the system. The diagram includes the
branches of travelling waves (TW) and steady-state solutions (SOC). Since for periodicity
	=2 the critical wavenumber is 
, which is near the critical wavenumber in an in�nite
domain, only a pair of rolls �ts in the box. As usual, dashed and solid lines denote unstable
and stable solutions, respectively. As for the precise location of the bifurcations presented
in the diagram, the critical Rayleigh number at the onset of convection is Rc=1960:5, the
Rayleigh number at which the secondary stabilizing saddle-node bifurcation in the TW branch
takes place is RTWSN =1863:7, the Rayleigh number of the saddle-node bifurcation in the SOC
branch is RSOCSN =1795:8 and the Rayleigh number of the parity-breaking bifurcation in which
the TW branch disappears and transfers stability to the SOC solution is R∗=1941:5. In
Figure 1(b) we have depicted the phase velocity of the travelling waves as a function of the
Rayleigh number. At Rc the phase velocity is c=2:337 and at R∗ goes to zero, as corresponds
to the parity-breaking bifurcation of the SOC states that takes place there. The structure of
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Figure 2. Streamlines and contour plots of the concentration �eld for the two TW solutions that exist
at R=1900 in a periodic box of 	=2. The solution plotted in: (a) belongs to the upper branch; and

(b) to the lower branch. S = − 0:12, �=6:86, �=0:0083.

the TW, which is shown in Figure 2, and of the SOC states has been discussed extensively
in References [21, 22].

4. DESCRIPTION AND COMPARISON OF THE DIFFERENT METHODS

In this section we present a comparison between the three methods presented in Section 2,
CNR, KIO and IPS, when the two travelling waves that exist at a Rayleigh number R=1900
for the parameters of Figure 1 are calculated. It should be noted that the solution belonging to
the upper part of the TW branch is highly nonlinear and that, even though the temperature and
velocity �elds are nearly harmonic in the x-direction, the horizontal concentration pro�le has
a trapezoidal shape [21, 22]. As a consequence, a high spatial resolution is required to resolve
the narrow concentration boundary layers of these solutions. For the solution belonging to the
lower part of the branch all the �elds are nearly harmonic, and such a large spatial resolution
is not needed. The streamlines and the contour plots of the concentration �eld of these two
travelling waves, which are plotted in Figure 2, show this feature.

4.1. The CNR method

To obtain the stream-function formulation we proceed as follows. We split the solenoidal
velocity �eld u(x; z; t) into its mean and �uctuating components,

u(x; z; t)=U(z; t) + u′(x; z; t)

where U=(U; 0), u′=(−@z�′; @x�′) and u′= �′=0, with the overline indicating an average
over the horizontal period.
Equations for U and �′ are obtained from the horizontal average of the Navier–Stokes

equations and the deviation of the vorticity equation from its horizontal average. In the spatial
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coordinates x̃= x − ct, y and z, the steady system of partial di�erential equations is

−�@2zzU + @zu′
x̃u′
z=0 (8a)

(−c@x̃ +U@x̃ − �∇2)!′ + Ra�[(1 + S)@x̃
+ S@x̃�)]

+ @2zzU@x̃�
′ +

@(�′; !′)
@(x̃; z)

− @(�
′; !′)

@(x̃; z)
=0 (8b)

(−c@x̃ +U@x̃ −∇2)
− @x̃�′ +
@(�′;
)
@(x̃; z)

=0 (8c)

(−c@x̃ +U@x̃ − �∇2)�+∇2
 + @(�
′; �)

@(x̃; z)
=0 (8d)

where !′= −∇2�′. The boundary conditions on z=0; 1 become

U = �′= @z�′=
= @z�=0

The resulting problem is solved numerically using a spectral Galerkin–Fourier technique
in x̃ and a collocation-Chebyshev method in z, by considering for U , �′, 
, � the following
expansions

U (z)=
Nz−1∑
m=1

Ukmfm(2z − 1) (9a)

�′(x̃; z)=
Nx=2∑

n=−Nx=2

Nz−3∑
m=1

�′
nmgm(2z − 1)einkx̃ (9b)

�(x̃; z)=
Nx=2∑

n=−Nx=2

Nz−1∑
m=1


nmfm(2z − 1)einkx̃ (9c)

�(x̃; z)=
Nx=2∑

n=−Nx=2

Nz−1∑
m=1

�nmhm(2z − 1)einkx̃ (9d)

where the functions fm(2z − 1), gm(2z − 1) and hm(2z − 1) are suitable combinations of
Chebyshev polynomials satisfying the boundary conditions, and k is the wavenumber. The
coe�cients are forced to verify anm= a∗

−nm (∗ indicating complex conjugated), so that the
�elds are real. For every Fourier mode, equations have been written at the Gauss–Lobatto
points zj= cos
j=Nz, with j=1; : : : ; Nz − 1 for Equations (8a)–(8d) and with j=2; : : : ; Nz − 2
for Equation (8b). The system of nonlinear equations resulting from the application of spectral
methods is solved with a standard library routine that uses a modi�ed Powell hybrid method.
In Tables I and II we show, for travelling waves belonging to the lower and upper branch,

respectively, the values of the Nusselt number minus one, the phase velocity c and the mean
kinetic energy Ek de�ned above, obtained with di�erent spatial resolutions. Note that for the
lower branch, convergence is reached with Nx=48 horizontal mesh points (the results for
Nx=48, Nz=40 and Nx=56, Nz=40 coincide). The �gures of the solution obtained with
Nx=48, Nz=44 do not vary if the resolution is increased. Table II shows that for the solution
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Table I. Classical Newton–Raphson iterative method. R=1900,
lower part of the TW branch.

Nx Nz Nu− 1 c Ek

36 18 0.0447172 1.6495707 2.191469
48 24 0.0445509 1.6512692 2.183347
48 32 0.0446342 1.6504908 2.187422
48 40 0.0446388 1.6504473 2.187647
56 40 0.0446388 1.6504473 2.187647
48 44 0.0446391 1.6504440 2.187664

Table II. Classical Newton–Raphson iterative method. R=1900,
upper part of the TW branch.

Nx Nz Nu− 1 c Ek

36 18 0.1352568 0.2855636 6.640279
56 28 0.1352184 0.2842036 6.638087
64 28 0.1352186 0.2841876 6.638097
56 32 0.1352065 0.2846225 6.637482
64 32 0.1352067 0.2846077 6.637491
56 36 0.1352088 0.2845506 6.637601
56 42 0.1352084 0.2845618 6.637579

in the upper branch a bigger resolution in the x-direction (more than Nx=56) is needed. Very
likely, a spatial resolution of Nz=42 in the z-direction is not enough either. Therefore, with
the maximum resolution allowed by our computer, Nx=56, Nz=42, we cannot assert that
all the �gures of the quantities Nu − 1, c and Ek of the solution are exact. It is worth
recalling that the solutions obtained with this method verify both the no-slip condition on the
boundaries and the incompressibility condition.

4.2. The KIO method

In order to implement the �rst-order time-splitting method by using the KIO method [11], we
have proceeded as follows.

• We obtain 
n+1 from the Helmholtz-type problem

(∇2 −�t−1)
n+1 = [(u · ∇)
− c@x̃
− w −
=�t]n (10)

where the right-hand side contains quantities evaluated at the previous time step n.
Boundary conditions are those speci�ed in (7).

• Once 
n+1 is known, we can obtain �n+1 from another Helmholtz-type problem

(∇2 − (��t)−1)�n+1 = �−1[(u · ∇)�− c@x̃�− �=�t]n + �−1∇2
n+1 (11)

with the boundary conditions for �n+1 speci�ed in (7).
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• We combine the two equations
û − un
�t

= −∇p− [(u · ∇)u − c@x̃u]n + R�[(1 + S)
n+1 + S�n+1]êz (12a)

∇ · û=0 (12b)

to obtain the Poisson equation for the pressure p. This equation is solved using a
Neumann boundary condition derived from the semi-discrete Navier–Stokes equations
and the incompressibility condition, where the di�usion is separated in a solenoidal part
approximated by an explicit scheme of order one and in an irrotational part approximated
by an implicit scheme. Once the pressure �eld is obtained, the solenoidal intermediate
velocity �eld û can be evaluated.

• Eventually, we obtain un+1 from the following Helmholtz-type problem

(∇2 − (��t)−1)un+1 = − û=(��t) (13)

which we solve with the correct boundary conditions for the velocity �eld.

For the spatial discretization we have used a Fourier–Galerkin spectral method in the x-
direction (Fourier modes with wavenumber from 0 to ±Nx=2) and a Chebyshev-collocation
method in the z-direction. The advection terms have been obtained pseudospectrally calculating
the products in 3Nx=2 points of the physical space to avoid aliasing errors. Chebyshev Gauss–
Lobatto collocation points zj= cos
j=Nz, with j=0, Nz, are considered and all the derivatives
in z have been calculated by matrix multiplication. In every step and for every Fourier mode
n in x, we have solved in z a system of the type

(Dzz − an)�n(z)= hn(z)
with boundary conditions in z=0; 1. These systems are solved by using a diagonalization tech-
nique [23]. Finally, the linear system corresponding to the preconditioned version of Newton’s
iteration (4) has been solved with an iterative technique, using a GMRES package [24]. With
this method the velocity �eld resulting from the �nal step un+1 veri�es the correct boundary
conditions, but it is not forced to be solenoidal. To evaluate the deviation of the velocity
�eld from the solenoidal character, we have introduced the variable ‘div’, which represents
the mean divergence in the domain:

div=

[
	−1

∫ x=	

x=0

∫ z=1

z=0
(∇ · u)2 dx dz

]1=2

Tables III and IV show the results obtained when the two travelling waves that exist at
R=1900 are calculated with di�erent resolution. The value of the ‘div’ variable has also
been included. In our computations the Newton’s iteration �nishes either when the norm of
the right-hand side of Equation (4) is smaller than a certain small quantity �1 or when the
relative error of the correction is small enough. Once the criterion of convergence is �xed,
we have to choose the optimum �t that allows to compute the solution with the minimum
number of iterations at every step of the Newton iteration. An alternative criterion we have
used to choose �1 and �t is that ‘div’ be as small as possible for a given resolution. The
solution obtained as a result of the Newton iteration can present some �uctuations depending
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Table III. Preconditioned method using KIO integrator. R=1900,
lower part of the TW branch.

Nx Nz Nu− 1 c Ek div

36 18 0.042700 1.68771 2.09318 6:4× 10−3

48 24 0.044652 1.64907 2.18827 5:1× 10−4

48 32 0.0446446 1.650285 2.187929 3:8× 10−5

48 40 0.0446393 1.650436 2.187674 1:9× 10−6

56 40 0.0446393 1.650436 2.187674 1:9× 10−6

48 44 0.0446390 1.650446 2.187658 4:7× 10−7

48 60 0.0446390 1.650446 2.187657 2:0× 10−7

Table IV. Preconditioned method using KIO integrator. R=1900,
upper part of the TW branch.

Nx Nz Nu− 1 c Ek div

36 18 0.134413 0.29551 6.65984 4:0× 10−3

56 28 0.135192 0.2841670 6.63675 1:4× 10−4

64 28 0.135192 0.2841511 6.63676 1:4× 10−4

56 32 0.1352311 0.2845325 6.638707 1:1× 10−4

64 32 0.1352313 0.2845178 6.638716 1:1× 10−4

56 36 0.1351994 0.2845908 6.637134 4:2× 10−5

56 42 0.1352085 0.2845621 6.637585 8:0× 10−7

80 70 0.1352086 0.2845484 6.637590 3:0× 10−8

on the chosen value of �t and �1. The results that appear in Tables III and IV, where only
the signi�cant �gures have been included, are obtained with the values of �t and �1 that give
the minimum value of ‘div’. We use typically �1≈ 10−9 and �t between 100 and 1000. Note
that the larger the resolution used, the smaller the value of ‘div’ that we obtain. By comparing
with the results obtained with the �rst method, we see that the solutions at the lower branch
converge quite well, and that if the resolution in z is increased we obtain the same result.
The same occurs with the solution at the upper branch, but with this method we are able to
further increase the resolution, since the Jacobian is not stored or inverted explicitly. We can
see that the result with Nx=80, Nz=70 only presents small di�erences with respect to the
solution obtained with Nx=56, Nz=42.

4.3. The IPS method

In this section, we detail the fractional steps in the �rst-order splitting method by using the
improved projection scheme IPS proposed in Reference [13]. Note that the two �rst steps
corresponding to obtaining 
n+1 and �n+1 are the same as those at the KIO method.

• 
n+1 is obtained from the Helmholtz-type problem

(∇2 −�t−1)
n+1 = [(u · ∇)
− c@x̃
− w −
=�t]n (14)

with the boundary conditions speci�ed in (7).
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• �n+1 is calculated solving

(∇2 − (��t)−1)�n+1 = �−1[(u · ∇)�− c@x̃�− �=�t]n + �−1∇2
n+1 (15)

with the boundary conditions for �n+1 speci�ed in (7).
• We obtain a preliminary pressure �eld from the Navier–Stokes and continuity equations

∇2 �pn+1 =∇ · {[−(u · ∇)u+ c@x̃u]n + R�[(1 + S)
n+1 + S�n+1]êz} (16)

with the Neumann boundary condition from the pressure proposed in Reference [11].
• We calculate a predictor velocity �eld u∗ from the Navier–Stokes equation by including
the predictor pressure �p with the actual boundary conditions

(∇2 − (��t)−1)u∗ = �−1∇ �pn+1 + �−1[(u · ∇)u − c@x̃u − u=�t]n

−R[(1 + S)
n+1 + S�n+1]êz

• In the correction step we solve the system
un+1 − u∗

�t
= −∇(pn+1 − �pn+1) (17a)

∇ · un+1 =0 (17b)

with the �rst equation satis�ed also on the boundary, and with the correct boundary
condition for the normal component of the velocity �eld. This system gives rise to
a Poisson equation for the variable �=�t(pn+1 − �pn+1) with the Neumann boundary
condition @�=@n=0. Eventually, the corrected pressure and velocity �elds, pn+1 and
un+1, are calculated from the value of �

pn+1 = �pn+1 + �=�t (18a)

un+1 = u∗ −∇� (18b)

For the spatial discretization we have used a Fourier-collocation method in x and a
Chebyshev-collocation method in z. Collocation points in x are xi=2
i=Nx, with i=0, Nx−1,
and in z the Chebyshev Gauss–Lobatto points zj= cos
j=Nz, with j=0; Nz. All the derivatives
in x and z have been calculated by matrix multiplication. On Fourier and Chebyshev-
collocation points the Helmholtz and Poisson equations are solved by using complete
diagonalization in both directions [23]. As in the KIO method, the linear system correspond-
ing to the preconditioned version of Newton’s iteration has been solved by using a GMRES
package [24]. Note that with this method the velocity �eld u slips on the boundary, since
only the normal component is forced to be zero in the correction step. As a measure of the
deviation from the no-slip condition we have used the variable ‘slip’, de�ned as

slip=

[
	−1

∫ x=	

x=0
[u(z=1)]2 dx

]1=2

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:707–721



CONTINUATION OF TRAVELLING-WAVES OF THE N–S EQUATIONS 719

Table V. Preconditioned method using IPS integrator. R=1900,
upper part of the TW branch.

Nx Nz Nu− 1 c Ek slip

36 18 0.0436847 1.666722 2.141600 1:5× 10−3

48 24 0.0446268 1.650115 2.187020 1:1× 10−3

48 32 0.0446401 1.650397 2.187705 8:0× 10−6

48 40 0.0446391 1.650442 2.187662 4:0× 10−6

56 40 0.0446391 1.650443 2.187661 4:0× 10−7

48 44 0.0446391 1.650444 2.187662 1:0× 10−7

48 60 0.0446391 1.650445 2.187661 2:0× 10−9

Table VI. Preconditioned method using IPS integrator. R=1900,
upper part of the TW branch.

Nx Nz Nu− 1 c Ek slip

36 18 0.135245 0.27278 6.63903 9:5× 10−4

56 28 0.135208 0.28416 6.63675 3:3× 10−5

64 28 0.135207 0.28421 6.63753 3:2× 10−5

56 32 0.135216 0.28452 6.63801 2:5× 10−5

64 32 0.135211 0.28457 6.63796 1:2× 10−5

56 36 0.135205 0.28452 6.63741 8:0× 10−6

56 42 0.135209 0.28451 6.63761 2:0× 10−7

80 70 0.135208 0.28455 6.63758 5:0× 10−8

In Tables V and VI we show the results obtained when we calculate the two travelling
waves that exist at R=1900 with di�erent resolution. We have also included the value of
the ‘slip’ variable de�ned above. The criteria used to �nish the Newton iterations are similar
to those used in the KIO method, with the ‘slip’ variable playing the same role as the ‘div’
variable. As occurred there, the larger the resolution used, the smaller the value of ‘slip’ we
obtain. By imposing the same value of �1, �1≈ 10−9, we have to use a bigger value of �t
than in the KIO method. However, with a lower resolution, the solution obtained with the
IPS method seems to present less error than with the KIO method.
Finally, it is worth comparing the CPU running time with the three methods. We have

measured the time devoted to calculating the solution at Rayleigh number R=1910, giving
as a guess the solution at Rayleigh number R=1900. With a resolution of Nx=56, Nz=42,
the CPU time with the CNR method is of about 25 min, whereas with the other meth-
ods the CPU time is of about 15 seconds. This information allows us to strongly recommend
the usage of time-stepping codes for the preconditioning of the Newton’s iterations to obtain
travelling-wave solutions.

5. CONCLUSIONS

In this paper, a highly e�cient way of obtaining travelling-wave solutions has been presented
and tested in a two-dimensional binary-�uid convection problem. Travelling waves turn into
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steady solutions when described from a reference frame moving at the wave phase velocity.
Therefore, a simple change of variables allows us to obtain a stationary system of equa-
tions. To solve the resulting system, which includes the phase velocity as an unknown, we
have followed two di�erent approaches. In the �rst approach, we have implemented a classical
Newton–Raphson (CNR) iterative scheme with an explicit evaluation of the Jacobian
matrix, using spectral methods for the spatial discretization. Beforehand, since we have used
a stream-function formulation of the Navier–Stokes equations, the solution of the discretized
problem satis�es exactly both the boundary conditions and the incompressibility constraint.
The known drawback of the method is the high cost of the construction, storage and inver-
sion of the Jacobian matrix. In the second approach, we have used a method proposed by
Mamun and Tuckerman [9] based on the adaptation of a time-stepping code to carry out each
Newton’s iteration. Here, we have implemented this method with two di�erent fractional step
techniques, the KIO and the IPS methods. Whereas in the KIO method the velocity �eld
resulting from the �nal step veri�es the boundary condition but is not forced to be solenoidal,
just the opposite is the case with the velocity �eld in the IPS method. In both cases, it is
important to treat properly in the time-stepping algorithm the new terms arising from the
change in the frame of reference. An explicit treatment of these terms, similar to that of the
nonlinear advective terms, allows us to maintain the structure of the time evolution solver
unchanged and is shown to be e�ective for the calculations.
The careful analysis of the numerical tests made with the di�erent methods leads to a

number of interesting conclusions. First, the solutions obtained with the new method agree
with those obtained with the stream-function formulation, showing that the splitting errors
are not signi�cant. It is important to emphasize that the values of the divergence in the IPS
method and of the velocity slip in the KIO method become very small as the resolution is
increased. It should also be noted that, although a very large value of the time step is used
in the preconditioner, the �nal solution is not in�uenced by the error we should expect if
this large value of the time step had been used in a time evolution with the same splitting
scheme.
The second important conclusion is that the new method is extremely e�cient if compared

to the Newton–Raphson solver or to the direct computation of stable travelling waves with a
time-stepping code. The CPU time needed to obtain a travelling-wave solution is reduced by
two orders of magnitude with respect to the Newton–Raphson scheme.
Regarding the splitting scheme, our results show that the IPS method converges faster,

for low resolutions, than the KIO scheme. Therefore, our method of choice would be the
IPS splitting scheme combined either with a Galerkin or a collocation Fourier spectral
method.
To summarize, in this paper we have described a practical and e�cient way for the calcu-

lation of stable and unstable travelling waves in periodic geometries. This method is expected
to be broadly applicable to problems in three-dimensional geometries, such as cylindrical,
annular and spherical domains, where the �rst time-dependent solutions are usually in the
form of travelling-waves. An existing time-dependent code based on a splitting algorithm can
be easily adapted for the e�cient computation of travelling-wave solutions.
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